Wednesday, August 3, 2011

Final Year Projects | IEEE Projects | Application Projects



Final Year Projects | IEEE Projects | Application Projects


Publishing Search Logs – A Comparative Study of Privacy Guarantees

Posted: 03 Aug 2011 03:24 AM PDT

Search engine companies collect the “database of intentions,” the histories of their users’ search queries. These search logs are a gold mine for researchers. Search engine companies, however, are wary of publishing search logs in order not to disclose sensitive information. In this paper we analyze algorithms for publishing frequent keywords, queries and clicks of a search log. We first show how methods that achieve variants of k-anonymity are vulnerable to active attacks. We then demonstrate that the stronger guarantee ensured by epsilon-differential privacy unfortunately does not provide any utility for this problem. We then propose a novel algorithm ZEALOUS and show how to set its parameters to achieve (epsilon, delta)-probabilistic privacy. We also contrast our analysis of ZEALOUS with an analysis by Korolova et al. that achieves (epsilon’, delta’)-indistinguishability. Our paper concludes with a large experimental study using real applications where we compare ZEALOUS and previous work that achieves k-anonymity in search log publishing. Our results show that ZEALOUS yields comparable utility to k-anonymity while at the same time achieving much stronger privacy guarantees.


0 comments:

Post a Comment

Final Year Projects | IEEE Projects | Application Projects

Wednesday, August 3, 2011

Final Year Projects | IEEE Projects | Application Projects


Publishing Search Logs – A Comparative Study of Privacy Guarantees

Posted: 03 Aug 2011 03:24 AM PDT

Search engine companies collect the “database of intentions,” the histories of their users’ search queries. These search logs are a gold mine for researchers. Search engine companies, however, are wary of publishing search logs in order not to disclose sensitive information. In this paper we analyze algorithms for publishing frequent keywords, queries and clicks of a search log. We first show how methods that achieve variants of k-anonymity are vulnerable to active attacks. We then demonstrate that the stronger guarantee ensured by epsilon-differential privacy unfortunately does not provide any utility for this problem. We then propose a novel algorithm ZEALOUS and show how to set its parameters to achieve (epsilon, delta)-probabilistic privacy. We also contrast our analysis of ZEALOUS with an analysis by Korolova et al. that achieves (epsilon’, delta’)-indistinguishability. Our paper concludes with a large experimental study using real applications where we compare ZEALOUS and previous work that achieves k-anonymity in search log publishing. Our results show that ZEALOUS yields comparable utility to k-anonymity while at the same time achieving much stronger privacy guarantees.


0 comments:

Post a Comment

 

Copyright 2008 All Rights Reserved | Blogger Template by Bloganol and Smart Blogging Tips | Distributed by Deluxe Templates